INDIAN SCHOOL AL WADI AL KABIR

CLASS: VII	DEPARTMENT: SCIENCE	DATE: 1/09/2022
TEXTBOOK Q \& A	TOPIC: MOTION AND TIME	NOTE: A4 FILE FORMAT
NAME OF THE STUDENT:	CLASS \& SEC:	ROLL NO.

1. Classify the following as motion along a straight line, circular or oscillatory motion:
(i) Motion of your hands while running. - oscillatory
(ii) Motion of a horse pulling a cart on a straight road. - Motion along a straight line
(iii) Motion of a child in a merry-go-round. - Circular motion
(iv) Motion of a child on a see-saw. - Oscillatory motion
(v) Motion of the hammer of an electric bell. - Oscillatory motion
(vi) Motion of a train on a straight bridge. - Motion along a straight line
2. Which of the following are not correct?
(i) The basic unit of time is second.
(ii) Every object moves with a constant speed.
(iii) Distances between two cities are measured in kilometres.
(iv) The time period of a given pendulum is constant.
(v) The speed of a train is expressed in m / h.

Ans. Incorrect statements are: (ii) and (v)
3. A simple pendulum takes 32 s to complete 20 oscillations. What is the time period of the pendulum?
Ans. Number of oscillations $=\mathbf{2 0}$
Total time taken to complete 20 oscillations $=\mathbf{3 2} \mathrm{s}$
Time period $=$ Total time taken $/$ Number of oscillations $=\mathbf{3 2} / \mathbf{2 0}=\mathbf{1 . 6} \mathrm{s}$
4. The distance between two stations is 240 km . A train takes 4 hours to cover this distance. Calculate the speed of the train.
Ans. Distance between two stations $\mathbf{=} \mathbf{2 4 0} \mathbf{~ k m}$
Total time take $=4 \mathrm{~h}$
Speed $=$ Distance $/$ Time $=240 / 4=60 \mathrm{~km} / \mathrm{h}$
5. The odometer of a car reads 57321.0 km when the clock shows the time 08:30 AM. What is the distance moved by the car, if at 08:50 AM, the odometer reading has changed to
57336.0 km ? Calculate the speed of the car in $\mathrm{km} / \mathrm{min}$ during this time. Express the speed in km / h also.

Ans. Initial reading of the odometer $=57321.0$
Final reading of the odometer $=57336.0$
Distance covered by the car = Final reading of the odometer - Initial reading of the odometer

$$
=57336.0-57321.0=15 \mathrm{~km}
$$

Starting time of car is 8:30 am and it stops at 8:50 am
Hence, time taken by car $=\mathbf{2 0} \mathbf{~ m i n}$.
a) Speed $=$ Distance $/$ Time $=15 / 20=0.75$
$\mathrm{km} / \min \mathrm{b}) \mathbf{2 0} \mathbf{m i n}=1 / 60 \times 20=1 / 3 \mathrm{~h}$

$$
\text { Speed }=\text { Distance } / \text { Time }=15 \div 1 / 3=15 \times 3 / 1=45 \mathrm{~km} / \mathrm{h}
$$

6. Salma takes 15 minutes from her house to reach her school on a bicycle. If the bicycle has a speed of $2 \mathrm{~m} / \mathrm{s}$, calculate the distance between her house and the school.
Ans. Time taken by Salma to reach her school by bicycle $=15 \mathrm{mins}=15 \times 60=900 \mathrm{~s}$ Speed of Salma's bicycle $=2 \mathrm{~m} / \mathrm{s}$

Speed $=$ Distance $/$ Time
Distance covered $=$ speed x time taken $=2 \times 900=1800 \mathrm{~m}$
We know, $\mathbf{1 0 0 0} \mathbf{m}=\mathbf{1 k m}$
So, $1800 \mathrm{~m}=1 / 1000 \times 1800=1.8 \mathrm{~km}$.
7. Show the shape of the distance-time graph for the motion in the following cases:
(i) A car moving with a constant speed.
(ii) A car parked on a side road.

Ans.

8. Which of the following relations is correct?
(i) Speed $=$ Distance \times Time
(ii) Speed = Distance/Time
(iii) Speed $=$ Time/Distance
(iv) Speed $=1 /$ Distance \times Time

Ans. (ii) Speed = Distance/Time
9. The basic unit of speed is:
(i) $\mathrm{km} / \mathrm{min}$
(ii) $\mathrm{m} / \mathrm{min}$
(iii) km / h
(iv) m / s

Ans. (iv) m/s
10. A car moves with a speed of $40 \mathrm{~km} / \mathrm{h}$ for 15 minutes and then with a speed of $60 \mathrm{~km} / \mathrm{h}$ for the next 15 minutes. The total distance covered by the car is:
(i) 100 km
(ii) 25 km
(iii) 15 km
(iv) 10 km

Ans. (ii) $\mathbf{2 5} \mathbf{~ k m}$
Calculation: When the speed of the car is $40 \mathrm{~km} / \mathrm{h}$ -
Time taken $=15 \mathrm{~min}=15 / 60=0.25 \mathrm{~h}$
Speed $=$ Distance/Time
Distance covered $=$ speed x time taken

$$
=40 \times 0.25=10 \mathrm{~km} \text { When }
$$

the speed of the car is $60 \mathrm{~km} / \mathrm{h}$ - Speed =
Distance/Time
Distance covered $=$ speed x time taken

$$
=60 \times 0.25=15 \mathrm{~km}
$$

Total distance covered by the car $=10+15=25 \mathrm{~km}$.
11. Suppose the two photographs, shown in Fig. 13.1 and Fig. 13.2, had been taken at an interval of 10 seconds. If a distance of 100 metres is shown by 1 cm in these photographs, calculate the speed of the fastest car.

Ans. The distance covered by the blue car (as evident from the photograph) from one horizontal white strip to another, which is measured by scale is 1.2 cm .
It is given that 1 cm is equivalent to 100 m .
Therefore, 1.2 cm is equivalent to 120 m .
Distance travelled by the car $=\mathbf{1 2 0} \mathbf{~ m}$
Time taken to cover this distance $=$ Time interval between the two photographs $=10 \mathrm{~s}$ 3
Speed $=$ Distance $/$ Time $=120 / 10=12 \mathrm{~m} / \mathrm{s}$
12. Fig. 13.15 shows the distance-time graph for the motion of two vehicles A and B. Which one of them is moving faster?

Fig. 13.15 Distance-ttme graph for the motton of two cars

Ans. Vehicle A is moving faster than vehicle B. Greater the slope of distance- time graph, higher is the speed.
13. Which of the following distance-time graphs shows a truck moving with speed which is not constant?

Ans. iii)

